1,901 research outputs found

    Atomic-level structural change in Ni-Ti alloys under martensite and amorphous transformations

    Get PDF
    The Ni-Ti alloys have been used widely as functional materials, especially for the purpose of superelastic behavior or shape memory effect. It has been believed that martensitic transformation (MT) between crystals plays a major role in the phase transition behavior, but recent experimental observation shows that there also exists stable amorphous structure. Detailed information of the atomic-level change, that is microscopic crystalline rearrangement of Ni-Ti alloys in applied shear deformation is needed. Our study aims at clarifying those atomic mechanisms by using molecular dynamics (MD) simulations. For Ni-Ti alloys, we assess the possibility of the modified version of EAM (MEAM) with parameters for Ni-Ti. We construct MD models to investigate both MT and amorphization in Ni-Ti alloys. We devise a method based on so-called common neighbor analysis (CNA) to effectively detects amorphous atoms, by finding clusters with five-folded symmetry (pentagonal bipyramids). In comparing models with different crystal orientation, when crystalline slip is not easy due to small resolved shear stress, the atoms in initial B2 or B19’ structure tend to be rearranged with rotational motion and transform to amorphous atoms. Besides, there are ”pre-amorphous” structures as a symptom of major and later increase of amorphous atoms

    Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    Full text link
    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (> 300 M_solar). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super-Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and that their X-ray emission is from the slim disk shining at super-Eddington luminosities.Comment: ApJ, accepte

    Oxidation mechanisms of ZRB2-based ultra high temperature ceramic matrix composites

    Get PDF
    Ultra-high temperature ceramics (UHTCs) are expected as the materials for the nose cones and leading edges for hypersonic and re-entry vehicles. Zirconium diboride (ZrB2) and its composites are a widely studied class of UHTCs. The oxidation of monolithic ZrB2 forms ZrO2 and B2O3. B2O3 acts as a surface protective layer; however, it evaporates above 1200℃. SiC particles are considered effective additives because the SiO2 formed by the oxidation of SiC protects the unreacted region. Simultaneously, excessive pores are formed under the surface in the SiC particle-dispersed ZrB2 matrix (hereafter denoted ZS) composites in a wide temperature range by the preferential oxidation of SiC (active oxidation of SiC) because solid SiO2 is not formed; instead, gaseous SiO forms by active oxidation because of the low oxygen partial pressure relative to that of the surface. The pore-rich porous layer is denoted the “SiC-depleted layer”. The SiC-depleted layer leads to spallation and delamination of the oxidized regions on the surface because strength and stiffness of this layer are quite low. Thus, excessive pore formation in ZS composites should be prevented to improve the oxidation resistance. The objective of this study is to understand oxidation mechanisms of ZrB2-based composites and to propose the way to prevent the formation of SiC-depleted layer in ZS composites. In the present study, we fabricated monolithic ZrB2, ZS, and ZrB2-SiC-ZrC (ZSZ) ternary composites by spark plasma sintering (SPS) technique. In addition, carbon fiber-reinforced ZSZ matrix (C/ZSZ) composites was also fabricated by Si melt infiltration (MI) process. Oxidation resistance of monolithic ZrB2, ZS, ZSZ, and C/ZSZ have specially designed fast heating system in order to characterize oxidation resistance above 2000℃. Please click Additional Files below to see the full abstract

    Machine learning for large-scale wearable sensor data in Parkinson disease:concepts, promises, pitfalls, and futures

    Get PDF
    For the treatment and monitoring of Parkinson's disease (PD) to be scientific, a key requirement is that measurement of disease stages and severity is quantitative, reliable, and repeatable. The last 50 years in PD research have been dominated by qualitative, subjective ratings obtained by human interpretation of the presentation of disease signs and symptoms at clinical visits. More recently, “wearable,” sensor-based, quantitative, objective, and easy-to-use systems for quantifying PD signs for large numbers of participants over extended durations have been developed. This technology has the potential to significantly improve both clinical diagnosis and management in PD and the conduct of clinical studies. However, the large-scale, high-dimensional character of the data captured by these wearable sensors requires sophisticated signal processing and machine-learning algorithms to transform it into scientifically and clinically meaningful information. Such algorithms that “learn” from data have shown remarkable success in making accurate predictions for complex problems in which human skill has been required to date, but they are challenging to evaluate and apply without a basic understanding of the underlying logic on which they are based. This article contains a nontechnical tutorial review of relevant machine-learning algorithms, also describing their limitations and how these can be overcome. It discusses implications of this technology and a practical road map for realizing the full potential of this technology in PD research and practice

    Intracellular MMP3 Promotes HSP Gene Expression in Collaboration With Chromobox Proteins

    Get PDF
    Matrix metalloproteinases (MMPs) are crucial factors in tumor progression, inflammatory/immune responses and tissue development/regeneration. Of note, it has been known that MMPs promote genome instability, epithelial-mesenchymal transition, invasion, and metastasis in tumor progression. We previously reported that human MMP3 could translocate into cellular nuclei and control transcription in human chondrosarcoma-derived cells and in articular cartilage (Eguchi et al. [2008] Mol Cell Biol 28(7):2391-2413); however, further transcriptional target genes and cofactors of intranuclear MMP3 have not been uncovered. In this paper, we used transcriptomics analysis in order to examine novel transcriptional target genes regulated by intracellular MMP3. We found that mRNA levels of HSP family members (HSP70B', HSP72, HSP40/DNAJ, and HSP20/CRYAB) are upregulated by the intracellular MMP3 overload. Bioinformatic analysis predicted several transcription factors that possibly interact with MMP3. Among these factors, heat shock factor 1 (HSF1) cooperated with the MMP3 to activate the HSP70B' gene promoter in reporter gene assays, while a dominant negative HSF1 blocked the role for MMP3 in the trans-activation. The hemopexin-like repeat (PEX) domain of the human MMP3 was essential for transcriptional induction of the HSP70B' gene. In addition, chromobox proteins CBX5/HP1α and CBX3/HP1γ cooperated with the PEX domain in induction of HSP70B' mRNA. Taken together, this study newly clarified that intracellular MMP3 cooperate with CBXs/HP1s in transcriptional promotion of HSP genes
    corecore